Model Parameters in FlockMTL
FlockMTL allows you to configure model behavior through the model_parameters
field in LLM function calls. This provides fine-grained control over how models generate responses, enabling you to optimize performance for specific use cases.
Overview
Model parameters are passed as JSON strings within the model_parameters
field of LLM function calls. Different providers support different parameters, allowing you to customize temperature, token limits, sampling methods, and more.
Compatibility: Works with all FlockMTL LLM functions - llm_complete
, llm_filter
, llm_embedding
, llm_reduce
, llm_rerank
, llm_first
, llm_last
OpenAI Parameters
OpenAI models support a comprehensive set of parameters for controlling generation behavior. For complete parameter reference, see OpenAI Chat Completions API.
Syntax
{
'model_name': 'gpt-4o',
'model_parameters': '{
"temperature": 0.7,
"max_tokens": 1000,
"top_p": 1.0,
"frequency_penalty": 0.0,
"presence_penalty": 0.0,
"stop": ["\\n", "END"],
"response_format": {...}
}'
}
Example Usage
SELECT llm_complete(
{
'model_name': 'gpt-4o',
'model_parameters': '{
"temperature": 0.7,
"max_tokens": 1000,
"top_p": 1.0,
"frequency_penalty": 0.0,
"presence_penalty": 0.0,
"stop": ["\\n", "END"],
"response_format": {...}
}'
},
{ 'prompt': 'Write a professional email subject line.' },
{ 'topic': 'quarterly report' }
) AS response;
Ollama Parameters
Ollama models support different parameters optimized for local deployment. For complete parameter reference, see Ollama Chat Completions API.
Syntax
{
'model_name': 'llama3.1',
'model_parameters': '{
"temperature": 0.7,
"num_predict": 1000,
"top_p": 0.9,
"top_k": 40,
"repeat_penalty": 1.1,
"format": {...}
}'
}
Example Usage
SELECT llm_complete(
{
'model_name': 'llama3.1',
'model_parameters': '{
"temperature": 0.3,
"num_predict": 300
}'
},
{ 'prompt': 'Provide a factual explanation.' },
{ 'topic': 'photosynthesis' }
) AS explanation;
Azure OpenAI Parameters
Azure OpenAI supports the same parameters as OpenAI. For complete parameter reference, see OpenAI Chat Completions API.
Syntax
{
'model_name': 'gpt-4',
'model_parameters': '{
"temperature": 0.7,
"max_tokens": 1000,
"top_p": 1.0,
"frequency_penalty": 0.0,
"presence_penalty": 0.0,
"stop": null
}'
}
Common Parameter Patterns
Deterministic Output
SELECT llm_complete(
{
'model_name': 'gpt-4o',
'model_parameters': '{
"temperature": 0.0,
"max_tokens": 500
}'
},
{ 'prompt': 'Explain the concept accurately.' },
{ 'concept': 'quantum computing' }
) AS factual_explanation;
Creative Generation
SELECT llm_complete(
{
'model_name': 'gpt-4o',
'model_parameters': '{
"temperature": 0.9,
"top_p": 0.95,
"presence_penalty": 0.5,
"max_tokens": 800
}'
},
{ 'prompt': 'Write a creative story.' },
{ 'genre': 'science fiction', 'setting': 'mars colony' }
) AS creative_story;
Code Generation
SELECT llm_complete(
{
'model_name': 'gpt-4o',
'model_parameters': '{
"temperature": 0.0,
"max_tokens": 300,
"stop": ["\\n\\n", "```"]
}'
},
{ 'prompt': 'Generate clean, working code.' },
{ 'language': 'python', 'task': 'sort a list' }
) AS code_snippet;